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 Synchrophasor estimation algorithms

 Signal sampling

• Aliasing and Nyquist-Shannon theorem

 The Discrete Fourier Transform (DFT)

Outline 2



 Estimation of the main tone of a signal whose frequency is not known 
a-priori 

 Static phasor representation vs. dynamic behavior of electrical 
systems

 Algorithm’s accuracy vs. algorithm’s response times

 Algorithm’s performances (50 estimations per second) vs. algorithm’s 
computational complexity

Synchrophasor estimation algorithm 

Challenges and requirements
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Class Typical algorithms Advantages Drawbacks

DFT

based

Fourier analysis (e.g., [1]) Low computational 

complexity, harmonic 
rejection

Spectral leakage,

Harmonic interferenceInterpolated DFT (e.g., [2])

Wavelet 

based
Recursive wavelet (e.g., [3]) Harmonic rejection

Computational 

complexity

Optimization 

based

WLS (e.g., [4]) Accurate when used in 

combination with other 
methods 

Non deterministic: 

driven by optimality 
criteriaKalman Filter (e.g., [5])

Taylor series 

based
Dynamic Phasor (e.g., [6]) Intrinsically dynamic

Computational 

complexity



DFT-based synchrophasor estimation algorithms

Measurement chain
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Signal sampling

Basics
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The waveforms of a generic power system (node 

voltages and/or branch/nodal currents) are analog 

signals characterized by distortion. In order to 

implement signal processing algorithms into a 

digital systems, we need first to convert the analog 

signal to its digital representation. 

As seen in the lecture #1, the sampling process can 

be modeled as a periodic impulse train modulated 

by the amplitude levels of the signal:

𝑥𝑆 𝑡 = 𝑥 𝑡 ⋅ ෍

𝑛=−∞

∞

𝛿 𝑡 − 𝑛𝑇𝑆 = ෍

𝑛=−∞

∞

𝑥(𝑛𝑇𝑆) ⋅ 𝛿(𝑡 − 𝑛𝑇𝑆)

being 𝛿 the Dirac delta function and 𝑇𝑆 = 1/𝐹𝑆 the 

sampling time and 𝐹𝑆 the sampling frequency

𝑡

𝑡

𝑡

𝑡



Signal sampling

Spectrum of the sampled signal
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𝑥(𝑡) 

𝑋(𝑓)

𝑥𝑆 𝑡 = 𝑥 𝑡 ⋅ ෍

𝑛=−∞

∞

𝛿 𝑡 − 𝑛𝑇𝑆

 

The spectrum of the sampled signal contains copies of the original spectrum 

𝑋(𝑓) centered at integer multiples of the sampling frequency 𝐹𝑆.

If the signal is band-limited with bandwidth 𝑭𝒎 < 𝑭𝑺/𝟐, the spectrum copies 

are not overlapped. Therefore from 𝑿𝑺 𝒇  it is possible reconstruct 𝑿 𝒇  (i.e., 

𝒙(𝒕)) by low-pass filtering the base-band copy.

𝑋𝑆 𝑓 = 𝑋 𝑓 ∗
1

𝑇𝑆
෍

𝑘=−∞

∞

𝛿 𝑓 −
𝑘

𝑇𝑆

=
1

𝑇𝑆
෍

𝑘=−∞

∞

𝑋 𝑓 −
𝑘

𝑇𝑆



Signal sampling

Aliasing
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2. Increasing the sampling 

frequency to values 

much larger than the 

highest spectrum 

component contained 
in the sampled signal.

𝑭𝒎 < 𝑭𝑺/𝟐

If the signal is NOT band-limited with 
bandwidth 𝑭𝒎 < 𝑭𝑺/𝟐, the spectrum copies 

are overlapping so that when they add 

together, the original spectrum 𝑿(𝒇) is no 

longer recoverable by low-pass filtering.

➔ (Nyquist-Shannon sampling theorem)

This phenomenon is usually referred as 

aliasing and does not allow to recover 

𝑋(𝑓) from 𝑋𝑆 𝑓 . 

Aliasing is usually corrected by two 

possible approaches: 
1. Using anti-aliasing filters that limits the 

signal bandwidth (reduced accuracy)
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Signal windowing

Basics
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In order to be able to perform spectral analysis on 

the acquired signal, the signal need to be 

sectioned in portions, also called windows.

The primary purpose of the window is to limit the 
time-extent of the signal so that the signal can be 

considered stationary within the duration of the 

window (i.e. the more rapidly the signal changes 

the shorter the window should be)

𝑡

𝑡

𝑡

𝑡



Signal windowing

Window parameters
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 The window length 𝑇 : it has to be selected as a trade-off between 
frequency resolution and time resolution.

 The window profile 𝑤(𝑡) : a naive approach, the rectangular window, 
involves simply truncating the dataset before and after the window, while 
not modifying the contents of the window at all. However, as we will see, 
this is a poor method of windowing and causes spectral leakage.

𝑤𝑅 𝑡 = ቊ
1
0

 
if − 𝑇/2 ≤ 𝑡 ≤ +𝑇/2

else



A different interpretation of the DFT

For a generic rectangular window, the single DFT bin can be computed using the 
following compact relation:

𝑋 𝑘 ≜
2

𝐵
෍

𝑛=0

𝑁−1

𝑤 𝑛 𝑥 𝑛 𝑊𝑁
𝑘𝑛 , 0 ≤ 𝑘 ≤ 𝑁 − 1

being 𝑥 𝑛  the sampled signal, 𝑤 𝑛  the discrete window function and B the 
normalization factor (the use of this factor ensures that the amplitude of the 
spectrum components is directly comparable with the original time domain signal): 

𝐵 ≜ ෍

𝑛=0

𝑁−1

𝑤 𝑛

The so-called twiddle factor is:

𝑊𝑁 = 𝑒−𝑗2𝜋/𝑁 = cos 2𝜋/𝑁 − 𝑗 sin 2𝜋/𝑁 , 𝑊𝑁
𝑘  = 𝑒−𝑗2𝜋𝑘/𝑁

The Discrete Fourier Transform (DFT)

Basics
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The Discrete Fourier Transform (DFT)

A more intuitive interpretation
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𝑋 𝑘

𝑘

𝑡

𝑥(𝑡)

The DFT can be equivalently written in matrix form 

for a more intuitive understanding of its logic



𝑋 𝑘 ≜
2

𝐵
෍

𝑛=0

𝑁−1

𝑤 𝑛 𝑥 𝑛 𝑊𝑁
𝑘𝑛

𝑋(0)

𝑋(1)
⋮

𝑋(𝑘)
⋮

𝑋(𝑁 − 1)

=
2

𝐵

1 1 1 ⋯ 1
1 𝑊𝑁 𝑊𝑁

2 ⋯ 𝑊𝑁
𝑁−1

⋮ ⋮ ⋮ ⋮

1 𝑊𝑁
(𝑘)𝑁 𝑊𝑁

(2𝑘)𝑁 ⋯ 𝑊𝑁
((𝑁−1)𝑘)𝑁

⋮ ⋮ ⋮ ⋮
1 𝑊𝑁

𝑁−1 𝑊𝑁
𝑁−2 ⋯ 𝑊𝑁

𝑤 0 𝑥(0)

𝑤 1 𝑥(1)
⋮

𝑤 𝑘 𝑥(𝑘)
⋮

𝑤 𝑁 − 1 𝑥(𝑁 − 1)

➔

It can be shown that the columns of 

matrix 𝑊𝑁
(𝑘)𝑁 are linearly independent.

Therefore, they are a base of ℂ𝑁. In this 

respect, the DFT provides, in the 

frequency domain, the projections of 

the windowed signal on that base of ℂ𝑁.

Note that 𝑤 𝑘 = 1 for a rect. window. 



 The DFT is a numerical tool that plays a central role in the 

implementation of a variety of digital signal-processing 

algorithms. 

 It is the equivalent of the continuous Fourier Transform for 

finite sequences of data characterized by length 𝑁  and 

separated by sample time 𝑇𝑆.

 The DFT can be correctly interpreted as frequency-

discretized version of the continuous-time Fourier transform. 

The DFT samples are called bins and are equally spaced by 

the frequency interval Δ𝑓 = 1/𝑇  that is called frequency 

resolution.

 The phase of each DFT bin specifies the relative alignment 

of the input signal to each complex exponential

 The magnitude of each DFT bin is proportional to the 

power contents of each complex exponential

The Discrete Fourier Transform (DFT) 12
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