Electrical and Electronics
Engineering

2024-2025

Master Semester 2

Course

Smart grids technologies

DFT-based Synchrophasor Estimation
Algorithms — DFT and Aliasing

Prof. Mario Paolone
Distributed Electrical Systems Laboratory
Ecole Polytechnique Fédérale de Lausanne (Switzerland)



Outline

m Synchrophasor estimation algorithms

® Signal sampling
» Aliasing and Nyquist-Shannon theorem

m The Discrete Fourier Transform (DFT)



Synchrophasor estimation algorithm n
Challenges and requirements

m Estimafion of the main tone of a signal whose frequency is not known
a-priori

m Static phasor representation vs. dynamic behavior of electrical
systems

m Algorithm’s accuracy vs. algorithm’s response times

m Algorithm’s performances (50 estimations per second) vs. algorithm’'s
computational complexity

Class Typical algorithms Advantages Drawbacks
DFT Fourier analysis (e.g., [1]) Low compu’rohono_l Spectral leakage,
based complexity, harmonic H ic interf
ase Interpolated DFT (e.g., [2]) rejection armonic interrerence
Wavelet Recursive wavelet (e.g., [3]) Harmonic rejection Compu’rc’npnol
based complexity
Obtimizati WLS (e.qg., [4]) Accurate when used in Non deterministic:
pfimization o . ) : .
based _ combination with other driven by optimality
Kalman Filter (e.qg., [5]) methods criteria
Taylor series : . : Computational
based Dynamic Phasor (e.g., [6]) Intrinsically dynamic complexity




DFT-based synchrophasor estimation algorithms n

Measurement chain

x(t)

—

Signal
sampling

x(n)

Signal wn) - x

(n)| Discrete
Fourier

X( Spectrum Jo: Ao, go(i

windowing

AWANWANVANYANY/

analysis
Transform y

N AN NN S

vV VvV VvV VV

(a

(VAAVARVERVARV.

1P | T

[l
T

n gl 1l
ll ll l“ [

1 T]
T 1

|

T




Signal sampling n

Basics
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The waveforms of a generic power system (node !

voltages and/or branch/nodal currents) are analog /\/\\/\/\\/\\

signals characterized by distortion. In order to

implement signal processing algorithms into @ (@
digital systems, we need first to convert the analog %0
signal to its digital representation. 11[11 1 ”Tl t

As seen in the lecture #1, the sampling process can (®)
be modeled as a periodic impulse train modulated W)

by the amplitude levels of the signal: ;
xs(t) = x(¢t) - Z 5(t —nTg) = Z x(nTs) - 6(t — nTy) (©
n=-—oo n=—oo X 0(1)

being § the Dirac delta function and Ts = 1/Fs the i
sampling time and Fs the sampling frequency L

W t
lll 1“

(d)



Signal sampling
Spectrum of the sampled signal

X

x(t) x5O =x(®- ) 8t-nTy)

n=-—oo

2 2

0 k . 1 }
X(f) xs<f>=X(f)*TiS > 6(f—;5) N
k=

1 | 1
— 5 7_]?) f() Fm 5 F\‘ f
2 (b) 2

The spectrum of the sampled signal contains copies of the original spectrum
X(f) centered at infeger mulfiples of the sampling frequency Fs.

If the signal is band-limited with bandwidth F,, < F5/2, the spectrum copies
are not overlapped. Therefore from X¢(f) it is possible reconstruct X(f) (i.e.,
x(t)) by low-pass filtering the base-band copy.



Signal sampling
Aliasing

If the signal is NOT band-limited with
bandwidth F,, < Fs/2, the spectrum copies
are overlapping so that when they add
together, the original spectrum X(f) is no ,
longer recoverable by low-pass filtering. Fp fo o Fu I

This phenomenon is usually referred as
aliasing and does not allow to recover

X(f) from Xs(f). z s
Aliasing is usually corrected by two
possible approaches: . .

1. Using anti-aliasing filters that limits the 7 7 W F R F 7
signal bandwidth (reduced accuracy) * ’

X

2. Increasing the sampling e
frequency to values
much larger than the
highest spectrum : :
component contained "5 I WE F. F 2F,
in the sampled signal. :

F,, < Fg/2 = (Nyquist-Shannon sampling theorem)

(c) =



Signal windowing n

Basics
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In order to be able to perform spectral analysis on x(0)

the acquired signal, the signal need to be ANAN/ \NWAWA .

sectioned in portions, also called windows. J VIV U \
(a)

The primary purpose of the window is to limit the 50

fime-extent of the signal so that the signal can be _1l1 1, . 1l 1,
considered stationary within the duration of the R U L A | G [
window (i.e. the more rapidly the signal changes (®)
the shorter the window should be) i)

(c)
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Signal windowing n

Window parameters

= The window length T: it has fo be selected as a trade-off between
frequency resolution and time resolution.

= The window profile w(t): a naive approach, the rectangular window,
involves simply truncating the dataset before and after the window, while
not modifying the contents of the window at all. However, as we will see,
this is a poor method of windowing and causes spectral leakage.

1if—-T/2<t<+T/2
wr(t) = {O / else /
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The Discrete Fourier Transform (DFT)

Basics
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A different interpretation of the DFT

For a generic rectangular window, the single DFT bin can be computed using the
following compact relation:

N—1
2
X() 2 = Z wr)x(MWE 0 <k <N —1

n=0

being x(n) the sampled signal, w(n) the discrete window function and B the
normalization factor (the use of this factor ensures that the amplitude of the
specirum components is directly comparable with the original time domain signal):

N-1
B wn)
n=0
The so-called twiddle factor is:

Wy = e /27/N = cos(2m/N) — j sin(2n/N), Wff = e~J2mk/N



The Discrete Fourier Transform (DFT) n
A more intuitive interpretation

N-1
2 The DFT can be equivalently written in matrix form

A kn
X(k) £ B Z) wn)x(m)Wy™ = for a more intuitive understanding of its logic
n=

7
X(0) 7 1 1 12 },_1 1r w(0)x(0)
X(1) , 1 Wy Wy - W w(1)x(1)
X | B[ WY WY e RO w(k)x (k)
X(N —1). 1 wyt owili - WN Hw(N — Dx(N - 1)

It can be shown that the columns of
matrix [Wlék)"’]ore linearly independent.

Therefore, they are a base of CV. In this
respect, the DFT provides, in the
frequency domain, the projections of
the windowed signal on that base of CV.

Note that w(k) = 1 for a rect. window.



The Discrete Fourier Transform (DFT) n

m The DFT is a numerical tool that plays a central role in the

Implementation of a variety of digital signal-processing
algorithms.

m |t is the equivalent of the continuous Fourier Transform for

finite sequences of data characterized by length N and
separated by sample time T;.

" The DFI can be correctly interpreted as frequency-
discretized version of the continuous-time Fourier transform.
The DFT samples are called bins and are equally spaced by

the frequency interval Af =1/T that is called frequency
resolution.

® The phase of each DFT bin specifies the relative alignment
of the input signal o each complex exponential

" The magnitude of each DFT bin is proportional to the
power contents of each complex exponential
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